
G05 – Random Number Generators

G05AAFP

NAG Parallel Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check for implementation-dependent
details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

G05AAFP generates a pseudo-random number from a uniform distribution in the semi-open interval
[0,1).

A total of 273 statistically independent generators are available. It is possible to select a particular
generator and initialize the seeds for the generator by calling G05ABFP or G05BBFP before G05AAFP.

If G05ABFP or G05BBFP is not used, default values for the generator and seeds are assumed. In that
case, generators on different logical processors will produce identical pseudo-random number sequences.

If it is required to produce more than one pseudo-random number at a time then the routine G05BAFP
is more economical to use due to low overheads. However, G05BAFP generates pseudo-random numbers
in the open interval (0,1) and not in the semi-open interval [0,1).

2 Specification

DOUBLE PRECISION FUNCTION G05AAFP()

3 Usage
3.1 Definitions

None.

3.2 Global and Local Arguments

Not applicable.

4 Arguments

None.

5 Errors and Warnings

None.

6 Further Comments

Repeatable sequences of pseudo-random numbers can be generated by calling G05ABFP to set the seeds
and the generator number before starting each sequence.

G05AAFP may be called without a prior call to Z01AAFP.

[NP3344/3/pdf] G05AAFP.1

G05AAFP NAG Parallel Library Manual

6.1 Algorithmic Detail

Each basic generator uses a Wichmann–Hill type generator (Wichmann and Hill [3]), which is a variant
of a multiplicative congruential algorithm to produce real pseudo-random numbers ui:

k1,i = (c1 × k1,i−1) mod m1

k2,i = (c2 × k2,i−1) mod m2

k3,i = (c3 × k3,i−1) mod m3

k4,i = (c4 × k4,i−1) mod m4

ui =
(

k1,i

m1
+

k2,i

m2
+

k3,i

m3
+

k4,i

m4

)
mod 1.0

where cj and mj, j = 1,4 are constant integers for each generator and kj,i on the left and right hand
of the equations are newly generated integer seeds and old seeds, respectively. The constants cj are in
the range 112 to 127 and the constants mj are prime numbers in the range 16718909 to 16776971, which
are close to 224 = 16777216. These constants have been chosen so that they give good results with the
spectral test, see Knuth [1] and Maclaren [2].

The period of each generator would be at least 292 if it were not for common factors between (m1 − 1),
(m2 − 1), (m3 − 1) and (m4 − 1). However, each generator should still have a period of at least 280.
Further details of the generators can be obtained from NAG and further discussion of the properties of
these generators is given in Maclaren [2] where it was shown that the generated pseudo-random sequences
are essentially independent of one another according to the spectral test.

7 References

[1] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison–Wesley (2nd Edition)

[2] Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

[3] Wichmann B A and Hill I D (1982) AS183 An efficient and portable pseudo-random number
generator Appl. Statist. 31 188–190

8 Example

The example program generates a single pseudo-random number on each processor on a 2 by 2 logical
grid of processors. Note: the default values for the seeds and generator are used on each processor (i.e.,
there is no call to G05ABFP), so the random number is identical on each processor.

8.1 Example Text

* G05AAFP Example Program Text
* NAG Parallel Library Release 3 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
INTEGER ICNTXT, ICOFF, IFAIL, MP, NP
LOGICAL ROOT
CHARACTER CNUMOP, TITOP
CHARACTER*20 FORMT

* .. Local Arrays ..
DOUBLE PRECISION WORK(1), X(1)

* .. External Functions ..

G05AAFP.2 [NP3344/3/pdf]

G05 – Random Number Generators G05AAFP

DOUBLE PRECISION G05AAFP
LOGICAL Z01ACFP
EXTERNAL G05AAFP, Z01ACFP

* .. External Subroutines ..
EXTERNAL X04BFFP, Z01AAFP, Z01ABFP

* .. Executable Statements ..
ROOT = Z01ACFP()
IF (ROOT) THEN

WRITE (NOUT,*) ’G05AAFP Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’The random number on each processor’
WRITE (NOUT,*)

END IF
*

MP = 2
NP = 2

*
* Declare the processor grid
*

IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)

*
* Now generate a random number
*

X(1) = G05AAFP()
*
* Print the number on the root processor
*

FORMT = ’F12.5’
TITOP = ’Y’
CNUMOP = ’X’
ICOFF = 0
IFAIL = 0
CALL X04BFFP(ICNTXT,NOUT,1,1,X,1,FORMT,TITOP,CNUMOP,ICOFF,WORK,1,

+ IFAIL)
IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’,IFAIL)

*
STOP

*
END

8.2 Example Data

None.

[NP3344/3/pdf] G05AAFP.3

G05AAFP NAG Parallel Library Manual

8.3 Example Results

G05AAFP Example Program Results

The random number on each processor

Array from logical processor 0, 0

0.20293

Array from logical processor 0, 1

0.20293

Array from logical processor 1, 0

0.20293

Array from logical processor 1, 1

0.20293

G05AAFP.4 (last) [NP3344/3/pdf]

